63 research outputs found

    Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia

    Get PDF
    Vegetated coastal ecosystems along the Red Sea and Arabian Gulf coasts of Saudi Arabia thrive in an extremely arid and oligotrophic environment, with high seawater temperatures and salinity. Mangrove, seagrass and saltmarsh ecosystems have been shown to act as efficient sinks of sediment organic carbon, earning these vegetated ecosystems the moniker \u27blue carbon\u27 ecosystems. However, their role as nitrogen and phosphorus (N and P) sinks remains poorly understood. In this study, we examine the capacity of blue carbon ecosystems to trap and store nitrogen and phosphorous in their sediments in the central Red Sea and Arabian Gulf. We estimated the N and P stocks (in 0.2 m thick-sediments) and accumulation rates (for the last century based on 210Pb and for the last millennia based on 14C) in mangrove, seagrass and saltmarsh sediments from eight locations along the coast of Saudi Arabia (81 cores in total). The N and P stocks contained in the top 20 cm sediments ranged from 61 g N m-2 in Red Sea seagrass to 265 g N m-2 in the Gulf saltmarshes and from 70 g P m-2 in Red Sea seagrass meadows and mangroves to 58 g P m-2 in the Gulf saltmarshes. The short-term N and P accumulation rates ranged from 0.09 mg N cm-2 yr-1 in Red Sea seagrass to 0.38 mg N cm-2 yr-1 in Gulf mangrove, and from 0.027 mg P cm-2 yr-1 in the Gulf seagrass to 0.092 mg P cm-2 yr-1 in Red Sea mangroves. Short-term N and P accumulation rates were up to 10-fold higher than long-term accumulation rates, highlighting increasing sequestration of N and P over the past century, likely due to anthropogenic activities such as coastal development and wastewater inputs. © 2020 The Author(s). Published by IOP Publishing Ltd

    Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf

    Get PDF
    Certain coastal ecosystems such as mangrove, saltmarsh and seagrass habitats have been identified as significant natural carbon sinks, through the sequestration and storage of carbon in their biomass and sediments, collectively known as \u27blue carbon\u27 ecosystems. These ecosystems can often thrive in extreme environments where terrestrial systems otherwise survive at the limit of their existence, such as in arid and desert regions of the globe. To further our understanding of the capability of blue carbon ecosystems to sequester and store carbon in such extreme climates, we measured carbon sediment stocks in 25 sites along the Western Arabian Gulf coast. While seagrass meadows and saltmarsh habitats were widely distributed along the coast, mangrove stands were much reduced as a result of anthropogenic pressures, with 90% of stands having been lost over the last century. Carbon stocks in 1 m deep surface sediments were similar across all three blue carbon habitats, with comparable stocks for saltmarsh (81 ± 22 Mg Corg ha−1), seagrass (76 ± 20 Mg Corg ha−1) and mangroves (76 ± 23 Mg Corg ha−1). We recorded a 38% decrease in carbon stocks between mature established mangrove stands (91 Mg Corg ha−1) and recently planted mangroves (56 Mg Corg ha−1). Mangroves also had the lowest carbon stock per total area owing to their very limited spatial coverage along the coast. The largest stock per total area belonged to seagrass beds as a result of their large spatial coverage within the Gulf. We employed 210Pb dating to determine the sediment accretion rates in each ecosystem and found mangrove habitats to be the most efficient carbon sequesters over the past century, with the highest carbon burial rate of the three ecosystems (19 g Corg m−2 yr−1), followed by seagrass (9 g Corg m−2 yr−1) and saltmarshes (8 g Corg m−2 yr−1). In this work, we describe a comprehensive comparison of sediment stocks in different blue carbon ecosystems within a single marine environment and across a large geographical area, and discuss our results in a global context for other blue carbon ecosystems in the dry tropics

    Ecology, life history, and fisheries potential of the flathead lobster (Thenus orientalis) in the Arabian Gulf

    Get PDF
    This study, which included examination of the distribution and life history and a stock assessment of the flathead lobster (Thenus orientalis), is the first of its kind in the waters of Saudi Arabia in the Arabian Gulf, also known as the Persian Gulf. The flathead lobster is widely distributed in this region, although it is more abundant in the central and northern Arabian Gulf. Carapace lengths at 50% and 95% maturity are 59 and 65 mm for females and 58 and 71 mm for males. The fecundity of 4 berried females ranged from 26,000 to 76,000 eggs per spawning, and the fertilization rate exceeded 97%. Length-frequency data were consistent with just 2 cohorts, indicating that this species has a short life span and high growth coefficient (K=0.846 year(-1)). Large fishing boats (called dhows) accounted for more than 98% of the total landings. Estimates of natural mortality rates from use of generalized depletion models have high statistical precision and a magnitude compatible with short life history. In addition, abundance levels estimated with the depletion model are sufficient to support a sustainable small-scale fishery either as bycatch of shrimp trawlers or as a resource targeted with specialized gear. A targeted fishery for flathead lobster could be set during the off months of the shrimp trawl fishery (February-July), reducing interference with the reproduction cycle.info:eu-repo/semantics/publishedVersio

    Exponential increase of plastic burial in mangrove sediments as a major plastic sink

    Get PDF
    © 2020 The Authors. Sequestration of plastics in sediments is considered the ultimate sink of marine plastic pollution that would justify unexpectedly low loads found in surface waters. Here, we demonstrate that mangroves, generally supporting high sediment accretion rates, efficiently sequester plastics in their sediments. To this end, we extracted microplastics from dated sediment cores of the Red Sea and Arabian Gulf mangrove (Avicennia marina) forests along the Saudi Arabian coast. We found that microplastics \u3c0.5 mm dominated in mangrove sediments, helping explain their scarcity, in surface waters. We estimate that 50 ± 30 and 110 ± 80 metric tons of plastic may have been buried since the 1930s in mangrove sediments across the Red Sea and the Arabian Gulf, respectively. We observed an exponential increase in the plastic burial rate (8.5 ± 1.2% year-1) since the 1950s in line with the global plastic production increase, confirming mangrove sediments as long-term sinks for plastics

    Diversity, distribution, and density of marine mammals along the Saudi waters of the Arabian Gulf: update from a multi-method approach

    Get PDF
    Despite the important role of marine mammals in marine ecosystems and the imperative for their conservation, there is still a great lack of information on the diversity, distribution, and density of these animals in the Saudi waters of the Arabian Gulf. To fill this gap, an integrative data-collection approach including fishermen’s questionnaires, opportunistic sighting reports, and directed boat-based surveys, was undertaken between 2016 and 2020, leading to the first scientific report of marine mammal diversity, distribution, and density in the region. The results of the different approaches carried out during the study confirmed a high diversity of cetaceans on the west coast of the study area, with bottlenose dolphins (Tursiops aduncus), humpback dolphins (Sousa plumbea) and dugongs (Dugong dugon) as the most common species. While the two dolphin species were found to be widely distributed in both coastal and offshore waters, D. dugon appears to occur exclusively in coastal waters in the southern part of the study area, mainly in the Gulf of Salwah. The presence of both species of dolphins increased during the summer months and in the vicinity of the numerous oil and gas facilities in this region. The distribution of the observed dolphins was found mostly within a 10–20 km radius around each facility. Other cetacean species observed less frequently in the area include Bryde’s whale (Balaenoptera edeni), killer whale (Orcinus orca), common dolphin (Delphinus delphis) and finless porpoise (Neophocaena phocaenoides). Regarding the density of marine mammals in the region, boat-based surveys confirmed the results of fishermen’s questionnaires and reports of opportunistic sightings, with bottlenose and humpback dolphins being the most abundant species. These results provide a baseline for policies oriented to the conservation of mammals in the Saudi waters of the Arabian Gulf.info:eu-repo/semantics/publishedVersio

    New Mediterranean Biodiversity Records (December 2017)

    Get PDF
    The “New Mediterranean Biodiversity Records” series includes new records of marine species found in the Mediterranean basin and/or information on the spatial distribution of already established species of particular interest. The current article presents information on 20 marine taxa classified per country according to their geographic position in the Mediterranean, from west to east. The new records per ecoregion are as follows: Algeria: the first record of the fish Etrumeus golanii is reported along the Algerian coast. Tunisia: the alien jellyfish Phyllorhiza punctata is reported for the first time in the Gulf of Gabès. Italy: the first record of Siganus rivulatus in the Strait of Sicily and a new record of Katsuwonus pelamis from the central Tyrrhenian Sea are reported. The establishment of the isopod of the genus Mesanthura in the northern Tyrrhenian with some notes on its ecology are also included. Croatia: signs of establishment of the Lessepsian Siganus luridus and the occurrence of the alien mollusc Rapana venosa are reported. Albania: the first record of the elasmobranch Alopias superciliosus and a recent sighting of the rare monk seal Monachus monachus in Albanian waters are given. Greece: signs of the establishment of the fish Parupeneus forsskali and of the ascidian Hermania momus in Hellenic Aegean waters are reported. Turkey: a new record of the fish P. forsskali and of the Acarea of the genus Acaromantis and Simognathus are given, while the first case of Remora australis in association with delphinids and the occurrence of the sea star Coscinasterias tenuispina are reported. Also, the establishment of the two alien species Isognomon legumen and Viriola sp. [cf. corrugata] are presented. Egypt: the fish Bathygobius cyclopterus is reported for the first time in Mediterranean Sea waters. Also, a new record of Pagellus bogaraveo and a first record of Seriola fasciata in Egyptian Mediterranean waters are reported. Lebanon: the first record of Dondice banyulensis is presented

    Differences in the macrozoobenthic fauna colonising empty bivalve shells before and after invasion by Corbicula fluminea

    Get PDF
    Bivalve shells can potentially alter the structure of aquatic benthic communities. However, little is known about the effect that different shell morphologies have on their associated fauna. This study aimed to understand how empty shells, from four different freshwater bivalve species, affect macrozoobenthic communities, using the River Minho (Iberian Peninsula) as a study area. Three native (Anodonta anatina, Potomida littoralis, Unio delphinus) and one non-indigenous (Corbicula fluminea) species were used for this research. Comparisons among species and between scenarios (i.e. before and after invasion by C. fluminea) were performed. Our results suggest that macrozoobenthic community structure did not vary among treatments, with the exception of species richness, which was higher on shells of native species. Furthermore, little difference was detected when comparing scenarios with and without C. fluminea shells, despite dissimilarities in size and morphology between species. The empty shells of C. fluminea partially (in terms of density and biomass, but not in species richness) replaced the role of empty shells of native species as a physical substratum for the associated macrozoobenthic community.Martina Ilarri is supported by a Post-doc grant (SFRH/BPD/90088/2012) from the Portuguese Foundation for Science and Technology – FCT through POPH/FSE funds. This study was conducted within the scope of the project ECO-IAS: Ecosystem-level impacts of an invasive alien species, supported by FCT and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010) and was also partially supported by the European Regional Development Fund (ERDF) through COMPETE funds (PEst-C/MAR/LA0015/2011) and by FCT/MEC through Portuguese funds (PIDDAC – PEst-OE/BIA/UI4050/2014).info:eu-repo/semantics/publishedVersio

    New Mediterranean biodiversity records (October 2015)

    Get PDF
    The Collective Article “New Mediterranean Biodiversity Records” of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article has adopted a country-based classification and the countries are listed according to their geographic position, from west to east. New biodiversity data are reported for 7 different countries, although one species reported from Malta is new for the entire Mediterranean basin, and is presumably also present in Israel and Lebanon (see below, under Malta). Italy: the rare native fish Gobius kolombatovici is first reported from the Ionian Sea, whilst the alien jellyfish Rhopilema nomadica and the alien fish Oplegnathus fasciatus are first reported from the entire country. The presence of O. fasciatus from Trieste is concomitantly the first for the entire Adriatic Sea. Finally, the alien bivalve Arcuatula senhousia is reported for the first time from Campania (Tyrrhenian Sea). Tunisia: a bloom of the alien crab ortunus segnis is first reported from the Gulf of Gabes, where it was considered as casual. Malta: the alien flatworm Maritigrella fuscopunctata is recorded in the Mediterranean Sea for the first time, on the basis of 25 specimens. At the same time, web searches include possible unpublished records from Israel and Lebanon. The alien crab P. segnis, already mentioned above, is first formally reported from Malta based on specimens collected in 1972. Concomitantly, the presence of Callinectes sapidus in Maltese waters is excluded since based on misidentifications. Greece: the Atlantic northern brown shrimp Penaeus atzecus, previously known from the Ionian Sea from sporadic records only, is now well established in Greek and international Ionian waters. The alien sea urchin Diadema setosum is reported for the second time from Greece, and its first record from the country is backdated to 2010 in Rhodes Island. The alien lionfish Pterois miles is first reported from Greece and concomitantly from the entire Aegean Sea. Turkey: the alien rhodophyte Antithamnion hubbsii is first reported from Turkey and the entire eastern Mediterranean. New distribution data are also provided for the native fishes Alectis alexandrina and Heptranchias perlo. In particular, the former record consists of a juvenile measuring 21.38 mm total length, whilst the latter by a mature male. Cyprus: the rare native cephalopod Macrotritopus defilippi, and the alien crab Atergatis roseus, sea slug Plocamopherus ocellatus and fish Cheilodipterus novemstriatus are first recorded from the entire country. Lebanon: the alien crabs Actaea savignii and Matuta victor, as well as the alien fish Synanceia verrucosa, are first recorded from the entire country. In addition, the first Mediterranean record of A. savignii is backdated to 2006, whilst the high number of M. victor specimens observed in Lebanon suggest its establishment in the Basin. The Atlantic fishes Paranthias furcifer and Seriola fasciata, and the circumtropical Rachycentron canadum, are also first reported from the country. The P. furcifer record backdates its presence in the Mediterranean to 2007, whilst S. fasciata records backdate its presence in the eastern Mediterranean to 2005. Finally, two of these latter species have been recently ascribed to alien species, but all three species may fit the cryptogenic category, if not a new one, better.peer-reviewe

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia)
    corecore